

LTE-ADVANCED AND BEYOND FUTURE RADIO ACCESS

DR STEFAN PARKVALL PRINCIPAL RESEARCHER ERICSSON RESEARCH

LTE – MOBILE BROADBAND

- Developed in 3GPP
 - 2005 LTE development started
 - 2008 First standard (Rel-8)
 - 2009 Commercial operation starts

- Packet-data only (no CS domain)
 - Rel-8 up to 300 Mbit/s DL 75 Mbit/s UL
 - Rel-10 up to 3 Gbit/s DL 1.5 Gbit/s UL in
 - Low latencies, 5 ms user plane, 50 ms control plane
- FDD and TDD
- > Fulfills all IMT-Advanced requirements

20 MHz

100 MHz

in

GLOBAL CONVERGENCE

- > LTE is the major technology for future mobile broadband
 - Convergence of 3GPP and 3GPP2 technology tracks
 - Convergence of FDD and TDD into a single technology track

LTE NETWORK COMMITMENTS

285 OPERATORS IN 93 COUNTRIES

Sources: GSA (Jan, 2012)

Countries with operators committed to and/or deploying LTE

LTE TECHNICAL OVERVIEW

LTE RADIO ACCESS COMPONENTS

LTE – ONE SLIDE OVERVIEW

> OFDM

- DFT precoding in UL to reduce PAR

> Scheduled transmissions (UL and DL)

- 1 ms subframe structure
- Hybrid ARQ

Integral multi-antenna support

Inter-cell interference coordination

SPECTRUM FLEXIBILITY

> Operation in differently-sized spectrum allocations

- Baseband/protocol specifications support anything from 6 to 110 RB (Resource Block, RB=180 kHz)
- RF requirements currently defined for 1.4, 3, 5, 10, 15, 20 MHz

> Support for paired (FDD) and unpaired (TDD) spectrum allocations

Common solutions

 economy of scale

LTE EVOLUTION

LTE REL-10 (LTE-ADVANCED)

> Part of the LTE evolution...

...but timing and scope heavily influenced by IMT-Advanced

> LTE Rel-10 exceeds IMT-Advanced requirements

	IMT-Advanced requirement	LTE Rel-8	LTE Rel-10
Transmission bandwidth	At least 40 MHz	Up to 20 MHz	Up to 100 MHz
Peak spectral efficiency - Downlink - Uplink	15 bps/Hz 6.75 bps/Hz	16 bps/Hz 4 bps/Hz	16.0 bps/Hz [30.0 bps/Hz]* 8.1 bps/Hz [16.1 bps/Hz]**
Latency - Control plane - User plane	Less than 100ms Less than 10 ms	50 ms 4.9 ms	50 ms 4.9 ms

* Value is for a 4x4 antenna configuration. Value in parentheses for 8x8

** Values is for a 2x2 antenna configuration. Value in parentheses for 4x4

CARRIER AGGREGATION

> What is it?

- Multiple component carriers operating in parallel

> Why?

- Exploitation of fragmented spectrum
- − Higher bandwidth ➡ higher data rates

CARRIER AGGREGATION

- Baseband implementation
 - Processing per component carrier
 - Relatively straightforward,
 Complexity ~ aggregated data rate

- > RF implementation
 - Challenging, especially on the terminal side
 - > True for any radio-access technology!
 - Complexity highly dependent on band combinations
 - Insertion loss, harmonics, intermodulation, ...

WHERE IS THE SPECTRUM TO AGGREGATE?

- Current allocation not aligned with rapid evolution of 3GPP technologies
 - > 90% of all contiguous spectrum \leq 15 MHz
 - 65% of all allocations \leq 10 MHz
 - 0% of US allocation are \geq 20 MHz
- > High data rates require large bandwidths
- › 'No' contiguous wide spectrum ➡ inter-band aggregation

ENHANCED MULTI-ANTENNA SUPPORT

- > Enhanced downlink spatial multiplexing
 - − Up to 8 layers spatial multiplexing ⇒ 30 bps/Hz
 - Can be combined with beamforming
- Uplink spatial multiplexing
 - − Up to 4 layers spatial multiplexing ⇒ 15 bps/Hz
- > Enhanced downlink multi-user MIMO

- > ...but most important enhanced reference-signal structure
 - Enabling novel multi-antenna structures
 - Improved beamforming, heterogeneous deployments, future CoMP arrangements, ...

ENHANCED MULTI-ANTENNA SUPPORT

- > Separation of reference signals for *demodulation* and *feedback*

 - Rel-8 essentially relies on a single reference signal structure for both
- > DM-RS for demodulation when transmitting data
 - Precoded with data
 antenna setup transparent to UE
 - Overhead scales with number of spatial layers
- > CSI-RS for channel-quality reporting *periodic but infrequent*

RELAYING

> Logically an eNodeB as seen from a UE perspective...

- Creates new cells can serve Rel-8 UEs
- Uses LTE spectrum/air interface for backhaul transport ("self-backhauling")
- ...but physically typically smaller and lower output power than macro
- Main usage scenario
 - When fiber/microwave backhaul is more expensive than LTE spectrum

RELAYING

- Inband relaying ➡ self interference handling
 - Non-simultaneous access-link transmission and backhaul-link reception

Architecture – donor eNB act as proxy between relay and remaining RAN

HETEROGENEOUS DEPLOYMENTS

> What?

- Low power nodes placed throughout a macro-cell layout

- > Why?
 - Data rates reduced path loss
 - Capacity "cell splitting" gains

> How?

- Some examples

"Conventional" pico

- Processing at pico
- Any" backhaul

Remote Radio Unit

- > Processing at macro
- > High-speed backhaul

Relay

- > Processing at pico
- Backhaul using LTE

HETEROGENEOUS DEPLOYMENTS

- > Deployment philosophy, not a technology component
 - Possible in Rel-8
 - Rel-10 provides tools for partial support of *excessive* range expansion
- > Heterogeneous deployments which node to connect to?
 - Traditionally UEs connected to the node with the best downlink (best RSRP)

- Range expansion increasing pico node uptake area (RSRP+offset)
 - Data rates lower path loss
 - Capacity offloading
 - How to ensure reception of control signaling from pico in range expansion zone?

HETEROGENEOUS DEPLOYMENTS

Baseline

- Modest range expansion
- > Existing Rel-8 functionality

Resource partitioning

- Macro almost silent
 reduced interference
 in range expansion zone
- > Excessive range expansion
- Not transparent to UEs Rel-11 functionality

Shared Cell

- > RRUs connected to macro
- > Distributed antenna placement
- > Any range expansion
- > Transparent to UEs

LTE EVOLUTION

LTE EVOLUTION - COMP

> Numerous schemes under discussion...

Dynamic Point Selection

Joint Transmission

Different deployment scenarios investigated...

Intra-site coordination

Inter-site coordination

Heterogeneous deployment

> Challenge - robustness

LTE EVOLUTION - SOFT CELL

- > Pico nodes *part of* an overlaid macro cell
 - Macro basic coverage (sysinfo, data, control)
 - Pico enhanced capacity and data rates (data and control only)
- > Pico node 'on' in essence only when transmitting user data
 - Improves energy efficiency, reduces interference
- > Dynamic and light-weight selection of pico node
 - Robustness

Public | © Ericsson AB 2011 | 2012-02-14 | Page 23

LTE EVOLUTION – FURTHER EXAMPLES

- > Flexible TDD allocations
 - Adapt to traffic variations [in small cells]

DL heavy <>>> UL heavy <>>> Empty of traffic

Machine-type communication

- Number of connections, low-cost terminals, ...

- > Enhancements of existing features
 - Additional band combinations
 - Carrier aggregation enhancements
 - Receiver improvements

- ...

THE FOLLOWING SLIDES CONTAIN FORWARD-LOOKING STATEMENTS WHICH MAY OR MAY NOT MATERIALIZE

LONG-TERM VISION OF THE FUTURE

A world with unlimited access to information and sharing of data available anywhere and anytime to anyone and anything

Provide wireless technology that will enable this future in an affordable and sustainable way

CHALLENGES FOR THE FUTURE

Massive growth in Traffic Volume	Co	Massive growth in onnected Devices	Wide range of Requirements & Use Cases
"1000x" in ten years		"50 billion devices" in 2020	Multi-Gbps in specific scenarios
Further expansion of mobile broadband Additional users and	со	Massive amount of mmunicating machines	Tens of Mbps "almost everywhere"
Increased usage + New types of devices ("communicating machines")			New requirements and use cases due to communicating machines

Affordable and sustainable

ENERGY EFFICIENCY

> Important for *existing* as well as *future* radio access

- Largely implementation issue
- Minimize transmission of always-on signals

Operating cost

New deployment possibilities

Market/political aspects

MACHINE-TYPE COMMUNICATION

- Very different characteristics/requirements
 - Very low cost ... but not always
 - Very low latency ... but not always
 - Very high reliability ... but not always
 - Very small amount of data ... but not always
 - Very low energy consumption ... but not always

- > Some applications served well by cellular
- > Some may be better served by other means

- ...

NEW SPECTRUM SCENARIOS

- > Bandwidth of several 100 MHz needed for multi-Gbps transmission
 - Hard to envision operator-dedicated spectrum of several 100 MHz
- Complementary use of alternative spectrum?
 - Unlicensed spectrum, secondary spectrum usage, spectrum sharing, ...
- > Usage of very high frequency bands?
 - Lots of spectrum available
 Extreme capacity and data rates
 - Small wave length
 Possibility for massive antenna solutions

ULTRA-DENSE DEPLOYMENTS

- > Order-of-magnitudes more dense than most-dense networks of today
- > Locally, infra-structure density of the same order or higher than device density
- Indoor or very-dense outdoor environments
- > Extreme data rates and traffic capacity
- > Minimized energy consumption
- Very-low-cost deployment/maintenance
- > Availability of very dense and flexible backhaul

DEVICE-TO-DEVICE COMMUNICATION

- > Discovery of and direct communication with peer devices
 - User terminals, machines, cars, ...
 - For enhanced service quality and to off-load cellular network
 - To enable communication when cellular network not available
- > D2D communication as integrated part of a cellular network
 - D2D link partly under network control network-assisted D2D
 - Enhanced quality and possibility to operate in operator/licensed spectrum

WHAT IS FUTURE RADIO ACCESS?

- > LTE will continue to evolve
 - Inter-site coordination, heterogeneous networks, energy efficiency, ...
 - No reason to radically deviate from LTE track
 - LTE capable of handling massive increase in capacity
- New applications and scenarios not supported sufficiently well by the LTE evolution
 - complementary radio-access technologies

FUTURE RADIO ACCESS

A range of radio-access solutions enabling anytime/anywhere access to information, sharing of data, and machine communication

SUMMARY

> LTE is the global technology for future mobile broadband

- Convergence of 3GPP/3GPP2 tracks, of FDD/TDD technologies
- Evolution; carrier aggregation, relaying, HetNet, CoMP, energy efficiency, ...
- Expanding into new usage scenarios and applications
- New radio access solutions
 - Complementing LTE in new scenarios/applications not supported sufficiently well by LTE

FOR FURTHER INFORMATION ...

Open the 3GPP specifications...

...or read The Book!

Public | © Ericsson AB 2011 | 2012-02-14 | Page 36

ERICSSON